Weak Banach-Saks property and Komlós’ theorem for preduals of JBW$^*$-triples

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Banach-Saks property in the space of compact operators

For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and‎ ‎a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$‎, ‎it is shown that the strong Banach-Saks-ness of all evaluation‎ ‎operators on ${mathcal M}$ is a sufficient condition for the weak‎ ‎Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in‎ ‎Y^*$‎, ‎the evaluation op...

متن کامل

weak banach-saks property in the space of compact operators

for suitable banach spaces $x$ and $y$ with schauder decompositions and‎ ‎a suitable closed subspace $mathcal{m}$ of some compact operator space from $x$ to $y$‎, ‎it is shown that the strong banach-saks-ness of all evaluation‎ ‎operators on ${mathcal m}$ is a sufficient condition for the weak‎ ‎banach-saks property of ${mathcal m}$, where for each $xin x$ and $y^*in‎ ‎y^*$‎, ‎the evaluation op...

متن کامل

The Banach-saks Property of the Banach Product Spaces

In this paper we first take a detail survey of the study of the Banach-Saks property of Banach spaces and then show the Banach-Saks property of the product spaces generated by a finite number of Banach spaces having the Banach-Saks property. A more general inequality for integrals of a class of composite functions is also given by using this property.

متن کامل

. FA ] 1 9 Fe b 20 07 THE WEAK BANACH - SAKS PROPERTY OF THE SPACE

In this paper we show the weak Banach-Saks property of the Banach vector space (L p µ) m generated by m L p µ-spaces for 1 ≤ p < +∞, where m is any given natural number. When m = 1, this is the famous Banach-Saks-Szlenk theorem. By use of this property, we also present inequalities for integrals of functions that are the composition of nonnegative continuous convex functions on a convex set of ...

متن کامل

The Banach-Saks property and Haar null sets

A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space X has the Banach-Saks property, then closed and convex subsets of X with empty interior are Haar null.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2016

ISSN: 0002-9939,1088-6826

DOI: 10.1090/proc/13250